100 prisoners problem - définition. Qu'est-ce que 100 prisoners problem
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est 100 prisoners problem - définition


100 prisoners problem         
  • Each prisoner has to find their own number in one of 100 drawers, but may open only 50 of the drawers.
  • The harmonic numbers are approximately given by the area under the hyperbola and can therefore be approximated by a logarithm
  • Probability distribution of the length of the longest cycle of a random permutation of the numbers 1 to 100. The green area corresponds to the survival probability of the prisoners
MATHEMATICS PROBLEM
One hundred prisoners problem; The condemned prisoners and the boxes; Locker puzzle; Locker Puzzle; Hundred prisoners problem
The 100 prisoners problem is a mathematical problem in probability theory and combinatorics. In this problem, 100 numbered prisoners must find their own numbers in one of 100 drawers in order to survive.
Year 2011 problem         
  • right
POTENTIAL PROBLEM INVOLVING COMPUTERS AND COMPUTER SYSTEMS IN TAIWAN IN THE YEAR 2011 (MINGUO 100)
Year 100 Problem; Year 100 problem; Y1C problem; Y1C Problem
The year 2011 problem or the Y1C problem () was a potential problem involving computers and computer systems in Taiwan in the night of 31 December 2010 and 1 January 2011.Pinyin news » Taiwan’s Y1C problem
Three Prisoners problem         
MATHEMATICAL PROBLEM
Three prisoners problem; Three Prisoners Problem
The Three Prisoners problem appeared in Martin Gardner's "Mathematical Games" column in Scientific American in 1959. It is mathematically equivalent to the Monty Hall problem with car and goat replaced respectively with freedom and execution.